Feasibility of alkaline water electrolysis with cation-selective membrane

M. Paidar, K. Vazač, M. Roubalík, K. Bouzek

Department of Inorganic Technology, Unniversity of Chemistry and Technology Prague
Technická 5, Prague, Czech Republic
(paidarm@vscht.cz)
Water electrolysis process

- Direct method of producing hydrogen
- Inexhaustible storage material: WATER
- Highest hydrogen quality
- Zero emmision clean process
- High operating costs
 - high cost of hydrogen
 - little extended process (cca 5 %)
- Water electrolysis
 - Alkaline
 - PEM (Acidic)
 - High-temperature
 - Electrolysis of brine (hydrogen as byproduct)

Water electrolysis in energy storage

unavoidable step in hydrogen production from alternative sources

process flexibility - required

3
Industrial alkaline water electrolysis

- **Electrolyte:** 25 – 35 % (wt.) KOH
- **Temperature:** 70 – 90 °C
- **Anode:** Nickel
- **Cathode:** Nickel, Steel
- **Separating partition:** Diaphragm
 - asbestos, ceramic, polymer, composite
- **Operating pressure:** 1 – 30 Bar
- **Advantage:** Low investment cost, simple construction – well matured process
- **Disadvantage:** Higher power consumption (U = 1.8 – 2.1 V), larger dimensions (compared to PEM electrolysis), asbestos diaphragm (thickness, electrochemistry properties)

Alkaline water electrolysis with Nafion®

Replacement of asbestos diaphragm by Nafion® membrane

• Compared to industry electrolysis
 – Reduced inter-electrode distance
 – Reduced device dimensions
 – High membrane cost

• Compared to PEM electrolysis
 – Low cost catalysts
 – Lower mobility of K⁺ / Na⁺ ions (vs H⁺)
 higher cell voltage, lower efficiency

• Additional benefits
 – Allows to provide additional process to hydrogen production – e.g.: caustic
 concentration from diluted solutions
 – Possibility to raise temperature (> 150 °C) reduction of the cell voltage
Experimental

Electrolyzer

- Membrane: Nafion® N 117 (20 cm²)
- Anode: Ni plate, Ni expanded mesh
- Cathode: Ni (Fe) plate, Ni (Fe) expanded mesh
- Cell arrangement: space between electrodes and membrane
 - spacer (1 mm)
 - expanded metal (zero-gap)

Experimental conditions

- Electrolytes
 - KOH vs. NaOH
 - different concentrations (5 to 25 % wt.)
 - different temperatures (25, 50 and 73 °C)
 - volume: 0.5 dm³
- Current density (125 to 500 mA/cm²)
- Mode of operation
 - Load curves – linear voltametry
Electrolyzer construction

- Ni smooth plates electrodes
- Teflon frames
- Spacers used
- Nafion® membrane

Diagram with labeled parts:
- Current feeders
- Electrolyte inlet
- Electrolyte outlet
- Heating
Influence of spacer

Electrolysis of 15% KOH, 73 °C, 120 ml/min electrolyte flow.

Prevent sticking the membrane to the electrodes + better electrolytes distribution
Expanded metal - Zero-gap arrangement

Ni plate with flow channels

Zero-gap electrode

Ni expanded mesh
Zero-gap = minimal inter-electrode distance + improved construction = better electrolyte distribution and bubbles dissipation

Improvement about 35% (measured at 2.2 V)
Influence of operating temperature

- Energy parameters strongly influenced by temperature
 - space for another improvement

Electrolysis of 10% NaOH, different temperature, 120 mL/min.
Influence of operating parameters

- NaOH better than KOH
- 15 – 20 % (wt.) NaOH best results

Ullmann encyclopedia:
- a-NaOH(40 °C), b-NaOH(60 °C),
- c-NaOH(80 °C), d-KOH(60 °C),
- e-KOH(80 °C)
Cell conductivity

- decrease of conductivity due to membrane conductivity loss (hydration)
- similar behavior for NaOH
Steel cathode

Steel has lower hydrogen overvoltage than nickel

Improvement about 25% (measured at 2.2 V)
Comparison with Industry

Results comparable with industry alkaline water electrolyzers

• Space for another improvement (temperature, catalyst)
Conclusions

- Alkaline water electrolysis with Nafion® membrane is feasible.
- Zero-gap arrangement – best results from tested construction type.
- Results comparable with industrial alkaline water electrolysis.
- Low electrolyte concentration - more flexible operation
- Optimal operating parameters:
 - hydroxide concentration: 15 – 20 % (wt.)
 - NaOH better than KOH
- Next possibility for another improvement in the future:
 - higher temperature (120 – 130 °C)
 - using catalyst
 - cell design (thinner membrane)
Thank you for attention