Alkaline vs PEM electrolysers: lessons learnt from Falkenhagen and WindGas Hamburg

By Denis Thomas, Hydrogenics
Renewable Hydrogen – EU Regulatory Affairs and Business Development Manager

06.04.2016, Hydrogen Days, Prague, Czech Republic
Agenda

1. Hydrogenics in a nutshell

2. Falkenhagen : Alkaline electrolysis technology

3. Hamburg Reitbrook: PEM electrolysis technology

4. Review of other ongoing demo projects

5. Conclusions
Hydrogenics in Brief
Zero-emission Hydrogen Technology Provider

Onsite Generation
Electrolysers
H₂O + electricity → H₂ + ½ O₂

Power Systems
Fuel Cell Modules
H₂ + ½ O₂ → H₂O + electricity

- Industrial Hydrogen
- Hydrogen Fueling
- Stationary Power
- Mobility Power

Energy Storage

Power-to-Gas
Hydrogenics in Brief
International structure

Hydrogenics Corporation
- Headquarter
 - Mississauga, Ontario, Canada
 - Since 1948
 - +/- 70 employees
 - Areas of expertise: Fuel cells, PEM electrolysis, Power-to-Gas
 - Previously: The Electrolyser Company, Stuart Energy

Hydrogenics Europe
- Oevel, Belgium
- Since 1987
- +/- 70 employees
- Areas of expertise: pressurized alkaline electrolysis, hydrogen refueling stations, Power-to-Gas
- Previously: Vandenborre Hydrogen Systems

Hydrogenics Gmbh
- Gladbeck, Germany
- Since 2002
- +/- 15 employees
- Areas of expertise: Fuel cells, mobility projects, Power-to-Gas

In total: +/- 155 employees
- Incorporated in 1995 [NASDAQ: HYGS; TSX: HYG]
- More than 2,000 products deployed in 100 countries worldwide
- Total revenues (2014): 45.5 Mio $
- Over 70 years of electrolysis leadership
Agenda

1. Hydrogenics in a nutshell

2. Falkenhagen: Alkaline electrolysis technology

3. Hamburg Reitbrook: PEM electrolysis technology

4. Review of other ongoing demo projects

5. Conclusions
Industry “Workhorse” for Onsite Electrolysis
Hydrogenics HySTAT™ Alkaline Stack

“We have strategically positioned ourselves with the highest quality products that combine innovation, customer-centric features with industrial design and robustness.”
Over 500 World-wide Industrial Systems
50 kW > 4 MW

Saudi Arabia: Powerplant
Russia: Float Glass
Romenia: Float Glass

Ukraine: Metallurgy
China: Merchant Gas
Greece: Solar Industry
Hydrogenics HySTAT™ Alkaline - Technical specifications

<table>
<thead>
<tr>
<th>MODEL</th>
<th>HySTAT™-10-10</th>
<th>HySTAT™-15-10</th>
<th>HySTAT™-30-10</th>
<th>HySTAT™-45-10</th>
<th>HySTAT™-60-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal hydrogen flow</td>
<td>10 Nm³/h</td>
<td>15 Nm³/h</td>
<td>30 Nm³/h</td>
<td>45 Nm³/h</td>
<td>60 Nm³/h</td>
</tr>
<tr>
<td>Nr. of cell stacks</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Hydrogen flow range</td>
<td>40 - 100% (25 - 100% as an option)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Purity (before HPS)</td>
<td>99.9% H₂O saturated, O₂ < 1,000 ppm</td>
<td></td>
<td></td>
<td></td>
<td>Falkenhagen</td>
</tr>
<tr>
<td>Hydrogen Purity (after HPS)</td>
<td>99.998% (99.999% as an option); O₂ < 2 ppm; N₂ < 12 ppm; Atm. Dew point: -60°C or -76°F (-75°C or -103°F as an option)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated AC power consumption (kWh/Nm³)</td>
<td>5.4 kWh/Nm³ at full capacity</td>
<td>5.2 kWh/Nm³ at full capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>3 x 400 VAC ± 3% (3 x 480 or 575 VAC ± 3% as an option)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz ± 3% / 60 Hz ± 3% (option)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installed power</td>
<td>100 + 35KVA</td>
<td>120 + 35KVA</td>
<td>240 + 35KVA</td>
<td>120 + 240 + 35KVA</td>
<td>2 x 240 + 35KVA</td>
</tr>
<tr>
<td>Max. cooling water temperature (electrolyte)</td>
<td>Design flow cooling water (electrolyte)</td>
<td>Closed loop cooling circuit installed</td>
<td>Chiller gas cooling circuit installed</td>
<td>Feed water purification system installed</td>
<td></td>
</tr>
<tr>
<td>Max. cooling water temperature (gas cooling)</td>
<td>Design flow cooling water (gas cooling)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demineralized water consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tap water consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrolyte</td>
<td>1,5 - 2 liters/Nm³ H₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrolyte Quantity</td>
<td>220 L</td>
<td>240 L</td>
<td>360 L</td>
<td>480 L</td>
<td>610 L</td>
</tr>
<tr>
<td>Installation area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Falkenhagen</td>
</tr>
<tr>
<td>Ambient Temperature Range</td>
<td>-20°C to +40°C (-40°C or +50°C as an option)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power at full capacity (+/-)</td>
<td>54 kW</td>
<td>81 kW</td>
<td>156 kW</td>
<td>234 kW</td>
<td>312 kW</td>
</tr>
</tbody>
</table>
Greening of Gas

OBJECTIVES
• Demonstration of the Power-to-Gas process chain.
• Optimize operational concept (fluctuating power from wind vs. changing gas feed).
• Gain experience in technology and cost.
• Feed H₂ into the high-pressure transmission natural gas pipeline at 55bar (ONTRAS).

SOLUTION
• 6 x HySTAT™ 60 with all peripherals in 20Ft. housings to produce 360Nm³/h H₂.
• A 40 Ft container including 2 compressors to compress the hydrogen to 55barg.
• Power: 2MW
Learnings from the Falkenhagen project

Power-to-Gas project: it works!

- Start of Construction: August 2012
- Start of Operation: August 2013
- Quoted from UNIPER:
 - 2 years of operation very successful
 - >2 Mill. kWh Hydrogen (“WindGas”) have been produced from renewable electrical power and have been injected in the natural gas grid up to July 2014.
 - More than 7,000 operating hours with more than 500 starts and stops
 - The efficiency is better than expected.
 - The technology is ready for the market and has further potential in performance and costs reduction.
 - No PtG-specific showdowns of the plant have been detected during operation. Degradation was not detectable.
 - Using Pressure Electrolysers have a cost reducing potential if compressors can be avoided.
 - The technology fulfilled the requirements of the German secondary balancing market.
Dynamic cycling of the alkaline electrolyser
…from pressure control to power set-point control
Agenda

1. Hydrogenics in a nutshell

2. Falkenhagen: Alkaline electrolysis technology

3. Hamburg Reitbrook: PEM electrolysis technology

4. Review of other ongoing demo projects

5. Conclusions
The New Benchmark in Electrolysis: PEM
Proton Exchange Membrane

1.5 MW, MODEL 1500E

- Electrical Power Input: 1.5 MW
- Hydrogen Output: 285 Nm3/h
- Max. Operating Pressure: 40 bar (g)
- Dimensions: L800xW550x1000mm
- Certifications: PED (97/23/EC)

1. 1.5MW industry benchmark
2. Achieved target system cost
3. Leading industry performance
4. Key IPR established
WindGas Hamburg Reitbrook, Germany (2015)

1.5 MW Power to Gas

OBJECTIVES
- Demonstration of the Power-to-Gas process chain.
- Development of 1.5 MW PEM Electrolysis Stack and System
- Optimize operational concept (fluctuating power from wind vs. changing gas feed).
- Gain experience in technology and cost.
- Feed H₂ into the medium-pressure distribution natural gas pipeline at 30 bar.

SOLUTION
- 1x 1.5 MW PEM Electrolyser with all peripherals in 40Ft. housings for max 285 Nm³/h H₂.
- Power: 1.5 MW

• This 1.5 MW building block is now the foundation for multi MW P2G plants

More info: www.windgas-hamburg.com
WindGas Hamburg Reitbrook, Germany (2015)

1,5 MW Power to Gas

OBJECTIVES

- Demonstration of the Power-to-Gas process chain.
- Development of 1.5 MW PEM Electrolysis Stack and System
- Optimize operational concept (fluctuating power from wind vs. changing gas feed).
- Gain experience in technology and cost.
- Feed H₂ into the medium-pressure distribution natural gas pipeline at 30 bar.

SOLUTION

- 1x 1.5 MW PEM Electrolyser with all peripherals in 40Ft. housings for max 285 Nm³/h H₂.
- Power: 1.5 MW

•This 1,5 MW building block is now the foundation for multi MW P2G plants

More info: www.windgas-hamburg.com
Learnings from the Hamburg Reitbrook project

MW PEM upscaling was successful!

- Start of operation: 15/10/2015

- Quoted from UNIPER:
 - The upscaling of PEM-Technology to the MW-Class was successful
 - The new PEM-Technology is very compact and efficient
 - Depending on higher pressure (25 bar) no compressor is necessary for injection of the hydrogen into the natural gas grid
 - The performance of the 1.5 MW PEM-stack is 50% better than originally planned
1,5 MW PEM: **efficiency** and **dynamic behaviour achievements (prel.)**

- Graph showing changes in power output and efficiency over time.
 - **Leistung** (Power) and **Wirkungsgrad Stack** (Stack Efficiency) are plotted.
 - The graph displays fluctuations that could indicate dynamic behavior.
 - A timeline of approximately 8 minutes is highlighted.

HYDROG(EN)ICS
SHIFT POWER | ENERGIZE YOUR WORLD
1.5 MW PEM: temperature and pressure achievements (prel.)
Hamburg Reitbrook : short project movie
Agenda

1. Hydrogenics in a nutshell

2. Falkenhagen: Alkaline electrolysis technology

3. Hamburg Reitbrook: PEM electrolysis technology

4. Review of other ongoing demo projects

5. Conclusions
Renewable hydrogen usage in power, gas, transportation and industry sectors
Puglia, Italy (2016, in construction)

INGRID (FP7 project)

OBJECTIVES
- Allow increased integration of RES into the grid using electrolysis and supply-demand balancing
- Improvement of distribution operations through active/reactive power control for optimal voltage regulation and power quality
- Hydrogen used for transport, industry, grid balancing and injection into the gas grid

SOLUTION
- 1 MW HySTAT™ electrolyser 40 ft, outdoor solution to produce 200 Nm³/h of hydrogen
- 120 kW fuel cell back-up system
- 39 MWh, 1.000 kg solid hydrogen storage system

More info: www.ingridproject.eu
BioCatProject

OBJECTIVES
- Design, engineer, and construct a commercial-scale power-to-gas facility
- Demonstrate capabilities to provide energy storage services to the Danish energy system.
- Demonstrate capability and economic viability of oxygen and heat recycling in the on-site wastewater operations
- Biological methanation system to produce pipeline-grade renewable gas (CH$_4$)
- Feed CH$_4$ into the gas distribution grid at 3.6 bar

SOLUTION
- 2x HySTAT™ 100 (Alkaline) with all peripherals to produce 200Nm3/h H$_2$.
- Power: 1MW

More info: www.biocat-project.com
BioCatProject

OBJECTIVES

- Design, engineer, and construct a commercial-scale power-to-gas facility
- Demonstrate capabilities to provide energy storage services to the Danish energy system.
- Demonstrate capability and economic viability of oxygen and heat recycling in the on-site wastewater operations
- Biological methanation system to produce pipeline-grade renewable gas (CH$_4$)
- Feed CH$_4$ into the gas distribution grid at 3.6 bar

SOLUTION

- 2x HySTAT™ 100 (Alkaline) with all peripherals to produce 200Nm3/h H$_2$.
- Power: 1MW

More info: www.biocat-project.com
Hobro, Denmark (construction in 2017)

HyBalance Project

OBJECTIVES
- Validate the highly dynamic PEM electrolysis technology in a real industrial environment
- Provide grid balancing services on the Danish power market
- Validate innovative hydrogen delivery processes for fueling stations at high pressure
- Hydrogen is used by industrial customers and for clean transportation (refueling stations)

SOLUTION
- 1x HyLYSER™ 230 (PEM, dual cell stack design) with all peripherals to produce 230 Nm³/h H₂
- Power: 1.2 MW

This project receives financial support FCH-JU (GA No 671384) and ForskEL program, administered by Energinet.dk.

More info: www.hybalance.eu
Colruyt, Halle (Brussels, Belgium)

65 kg/day, 350 bar dispensing

- Located at one of the warehouse of Colruyt, one of the biggest Belgian retail company
- Hydrogen is used to fill fork lift trucks, additionally it can refuel other vehicles
- The station has a 30 Nm³/h alkaline electrolyser, 50 kg storage and -20° chiller the customer’s SAEJ 2601 refueling sequence.
- Funded by InterReg project (Waterstofregio Vlaanderen Zuid-Nederland)

- + 30 Nm³/h PEM electrolyser
- Electrochemical compressor HYET
- + 100 kW Fuel Cell
- Smart grid operation
MefCO2 project (Methanol Fuel from CO2)

OBJECTIVES
- Increase efficiency and reduce emissions of STEAG’s coal fired power plant
- Leverage existing carbon capture pilot plant (= CO₂ source) owned by UDE

SOLUTION
- 1 MW PEM electrolyser for 200 Nm³/h of Hydrogen
- EU Horizon 2020 research and innovation programme funding (SPIRE)
- Flexible methanol synthesis.
- Power: 1MW

Agenda

1. Hydrogenics in a nutshell

2. Falkenhagen: Alkaline electrolysis technology

3. Hamburg Reitbrook: PEM electrolysis technology

4. Review of other ongoing demo projects

5. Conclusions
Large Scale Power-to-Hydrogen Plant (40 MW)

- **60m x 25m footprint**
- **40 MW = 8 000 Nm³/h = 720 kg/h**
- **17 t H₂/day**

Components:
- Cooling units
- Rectifier banks
- H₂O Feed pumps
- Gas/water separators
- H₂ Compressors
- Controls and electrical

H₂ Compressors:
- >1.25 MW per stack
- 4 stacks = 5 MW
- 8 stacks = 10 MW
Grid Fees and Levies
~50%

Wholesale Price Electricity
~30%

Capex
~20%

Opex ~2%

Investor Bonus

Renewable Credit:
Technology Push & Market Pull measures
~xx%

Service Income (balancing)
~xx%

Feedstock Income (H₂, O₂, Heat)
~xx%

Business Case Drivers

Hydrogen Cost

~30% ~50%
Hydrogen provides the means to significantly increase the use of renewable energy across the entire energy system.

Final energy consumption by fuel (EU-27, 2012)

Data source: European Environment Agency, Final energy consumption by sector and fuel (CSI 027/ENER 016)
Assessment published Jan 2015
Key conclusions

- Alkaline water electrolysis is a **mature** and **proven technology**, but there is still **room for further improvement** (footprint, dynamic operation, pressure, materials, costs).

- **PEM electrolysis technology** developments are **very promising** (efficiency, costs, flexibility, MW scale), especially for **large scale applications**. The technology has been **tested in a relevant environment**. It needs now to be tested over **many operating hours** (cost is a problem !) and **pre-qualified for commercial applications**. There is still **room for further improvement** (cost, efficiency), especially for very large scale projects (> 10 MW).

- Renewable Hydrogen offers **many synergies with other sectors** (power, gas, mobility, chemistry, water) and with CO$_2$.

- There is a **need for demonstration** projects (at large scale).

- **Most of the cost decrease for both technologies is expected from mass production** (project manufacturing → product manufacturing, optimization of supply chain).

- There is a **need for an appropriate regulation** at EU and national level to allow market uptake !

- **Industry focus should shift progressively from technology improvement to market creation activities.**
Thank you for your attention!

Denis THOMAS
Renewable Hydrogen
EU Regulatory Affairs & Business Development Manager
Mobile: +32 479 909 129
Email: dthomas@hydrogenics.com